

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 1293-1296

Synthesis and conformational analysis of benzimidazole-based reverse turn mimics

Giordano Lesma, Alessandro Sacchetti*, Alessandra Silvani

Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, via G. Venezian 21, 20133 Milano, Italy

Received 21 November 2007; revised 12 December 2007; accepted 19 December 2007 Available online 25 December 2007

Abstract

New benzimidazole-based tetrapeptide mimics were synthesized and their conformational features were studied by NMR and molecular modeling techniques. All the analyses led to the conclusion that a β -turn is stabilized in both 2 and 3. Since values of the torsion angles do not allow an univocal definition of the β -turn type, structures 2 and 3 could be assigned to the generic type IV classification. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The design, synthesis and application of peptidomimetic compounds have been for many years a focal point of a research aimed to develop new therapeutics with peptidelike activity and enhanced resistance towards proteases.¹ Among the different strategies, of particular interest and success has been the replacement of a dipeptide substructure in a natural substrate with a constrained rigid analogue, capable to induce a folding in the peptide chain.² Reverse turns are structural motifs commonly found in bioactive peptides that, besides being fundamental in protein folding, play a central role as molecular recognition elements.³ During the past decade, a large array of highly functionalized nitrogen heterocycles, mainly fused bicyclic lactams, have been synthesized and employed as reverse turn mimics.⁴ In search of new, small peptidomimetics that combine the structural rigidity with the ease of synthetic access, we focused on the benzimidazole moiety. Benzimidazole is a very common aromatic pharmacophore, which is present as a rigid scaffold in many different biologically active molecules.⁵ We envisaged that the amidine group of the benzimidazole ring could provide a rigid bioisostere of peptidic bond. In our strategy, the N-substituted benzimidazole 1 (Fig. 1) is designed as the dipeptide mimic of the i + 1 - i + 2 residues core of β -turn motif. Herein, we report the synthesis of new benzimidazole-based β-turn mimics 2 and 3 and their conformational analysis by molecular modeling calculations⁶ and ¹H NMR⁷ spectroscopy. These structures have been prepared through a straightforward synthetic path, relying on the condensation of ortho-phenylenediamine with an aminoacid, thus making in principle the easy preparation of a library of derivatives possible. In this study, we employed L-alanine and L-proline as the amino acid counterpart of condensation with ortho-phenylenediamine, realizing the synthesis of 2 (Ac-AlaBidGly-NHMe, Bid = 1H-benzo[d]imidazole) and 3 (Ac–ProBidGly–NHMe) derivatives. These compounds were selected after preliminary investigation by computational methods (vide infra) for their good β -turn mimic

^{*} Corresponding author. Tel.: +39 250314081; fax: +39 250314078. *E-mail address:* alessandro.sacchetti@unimi.it (A. Sacchetti).

^{0040-4039/\$ -} see front matter \odot 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.12.110

propensity. Compound 3 was chosen to investigate the effect on the reverse turn propensity of an increased steric hindrance and conformational rigidity with respect to 2.

2. Results and discussion

The synthesis of tetrapeptide mimics is outlined in Scheme 1. Reaction of *ortho*-phenylenediamine with *N*-acetyl-L-alanine produced intermediate 5 which was cyclized in acetic acid to yield the benzimidazole derivative 6. Alkylation with bromoacetic acid methylester followed by treatment with methylamine allowed to obtain the desired product 2.⁸ The same synthetic strategy was used for the preparation of 3. After condensation of *N*-acetyl-L-proline with *ortho*-phenylenediamine (DCC/HOBt), amide 7 was cyclized to compound 8. Alkylation of 8 with bromoacetic acid methylester and subsequent treatment with methylamine afforded 3.⁹

3. Conformational analysis: computational studies

Evaluation of the ability of 2 and 3 to induce reverse turn conformations was made by means of computational tools,¹⁰ by computing and analyzing characteristic geometric parameters^{3a} (Fig. 2).

Two main geometric features are used to characterize a β-turn: a value of the interatomic distance dα (Cα_{*i*}-Cα_{*i*+3}) less than 7 Å and the measure of the virtual torsion angle β , defined by C_i-C α_{i+1} -C α_{i+2} -N_{i+3}, for which $|\beta| < 30^{\circ}$ is associated with a tight reverse turn, while $|\beta| < 60^{\circ}$ is usually referred to an open reverse turn.¹¹ Another feature of β -turns is the presence¹² of a 10-membered ring hydrogen bond between the carbonyl oxygen at C_i and the hydrogen on N_{i+3} . The computational procedure consisted of an unconstrained Monte Carlo/energy minimization conformational search using the molecular mechanics MMFF94 force field¹³ both in water and in vacuo. Only conformations within 6 kcal/mol of the global minimum were kept. Results are reported in Table 1 as percentage of conformers which meet the cited requirements. Compound 2 shows moderate percentage of conformers satisfying the β-turn geometry. In vacuo, only three conformers (27%) have a

Fig. 2. Definition of parameters to characterize β -turn propensity of BID systems.

Table 1 MC/EM conformational analysis for **2** and **3**

		•			
	No. of conf. <6 kcal/ mol	$d\alpha < 7 \text{ Å}$	$ eta < 30^\circ$	$ eta < 60^{\circ}$	% H bond (10 membered ring)
Compound 2	2				
In vacuo	11	27 (3)	27 (3)	36 (4)	27 (3)
In water	12	42 (5)	33 (4)	42 (5)	27 (3)
Compound 3	3				
In vacuo	7	57 (4)	43 (3)	43 (3)	43 (3)
In water	7	57 (4)	43 (3)	43 (3)	43 (3)

Results are reported as percentage of conformers which meet the requirements (the occurrence numbers are given in parentheses).

distance $d\alpha < 7 \text{ \AA}$ and a torsion angle $|\beta| < 30^{\circ}$. The first two lowest energy conformers are β -turn mimics and the next conformer (conf. no. 3), which is not predicted to be a β -turn, is 1.08 Kcal/mol above the minimum. In water, a more favourable situation is revealed: 42% of conformers have $d\alpha < 7 \text{ Å}$ and $|\beta| < 60^{\circ}$. In this case, the two first conformers are β -turn mimics as well. Conformer no. 3 is not a β -turn mimic and its energy is 1.56 Kcal/mol above the minimum. A better situation is observed for compound 3. In this case, no difference between in vacuo and in water simulations is observed. A good percentage (57%) of conformers have a distance $d\alpha < 7 \text{ \AA}$ and 43% have a torsion angle $|\beta| < 60$. Again, the first two lowest energy conformers are good β -turn mimics and the next conformer (conf. no. 3, $\Delta E = 2.88$ Kcal/mol in vacuo, $\Delta E = 2.57$ Kcal/mol in water) is not a β -turn.

Scheme 1. Synthesis of tetrapeptide mimics 2 and 3.

 Table 2

 Characteristics of low-energy conformers calculated for 2 and 3

	da (Å)	β (°)	$\varphi_2^{\mathbf{a}} (^{\circ})$	$\psi_2^{\mathbf{b}}(^{\circ})$	$\varphi_3^{\mathbf{c}}(^{\circ})$	$\psi_3^{\mathbf{d}}$ (°)
2	5.38	11.04	-84.40	123.65	-115.26	81.00
3	5.57	-8.72	-68.32	113.98	-127.66	63.79

^a $C_i N_{i+1} - C\alpha_{i+1} - C_{i+1}$ torsion angle.

 $^{b}\ N_{i+1}\!\!-\!\!C\alpha_{i+1}\!\!-\!\!C_{i+1}\!\!-\!\!N_{i+2}$ torsion angle.

^c C_{i+1} - N_{i+2} - $C\alpha_{i+2}$ - C_{i+2} torsion angle.

^d N_{i+2} - $C\alpha_{i+2}$ - C_{i+2} - N_{i+3} torsion angle.

Computational studies support the prediction that molecules 2 and 3 would easily achieve a β -turn conformation, with the observation that the presence of a proline residue in 3 is a favourable condition. The calculated backbone geometries for 2 and 3 are reported in Table 2. The φ and ψ backbone torsion angles in residue *i*+1 and *i*+2 define the specific β -turn type.^{3a} Since analysis of the torsion angles does not allow an univocal classification of the β -turn type, structures 2 and 3 are assigned to the generic type IV¹⁴ classification.

An analysis to evaluate and quantify the similarity of **2** and **3** to standard type β -turns was performed by superimposing the atoms of the amide backbone. Results are reported as scores,¹⁵ for which a value of 1 means a perfect similarity (Table 3). This analysis confirms the impossibility to unambiguously assign a β -turn type, even if a slight preference for a type II β -turn geometry is revealed for both **2** (score 0.87) and **3** (score 0.89). The lowest energy conformers for **2** and **3** are shown in Figure 3.

4. Conformational analysis: ¹H NMR studies

Complete characterization of compounds **2** and **3** was realized through mono- and bidimensional NMR spectroscopy. A well established procedure to confirm the presence

Table 3

Similarity analysis of 2 and 3 with standard type β -turns

	Ι	I′	II	II'	III	III'	V	\mathbf{V}'
2	0.80	0.83	0.87	0.80	0.79	0.80	0.65	0.53
3	0.84	0.80	0.89	0.78	0.82	0.78	0.67	0.50

Results are reported as scores, see Ref. 15.

Fig. 3. Lowest energy conformers obtained by MM/MC calculations.

Table 4Spectroscopic data of tetrapeptide mimics 2 and 3

		δ DMSO- d_6 (ppm)	$\Delta\delta/\Delta T (\text{ppb/K})$
2	N <i>H</i> Me	8.14	-3.2
2	NHAc	7.40	-6.3
3	N <i>H</i> Me	8.35, 8.24	-4.0

of a β -turn conformation is to investigate the presence of the intramolecular hydrogen bond (C_iO-H-N_{i+3}) by means of variable temperature ¹H NMR experiments. The temperature dependence $(\Delta \delta / \Delta T)$ of the ¹H NMR chemical shifts of the amide protons for 2 and 3 was evaluated in DMSO- d_6 . The use of this solvent has been previously reported in the literature.¹⁶ In this solvent, intermolecular hydrogen bonds and those to the solvent are readily cleaved by increasing temperature. In general, for the chemical shift of the NH amide proton, a value of $\Delta \delta / \Delta T$ below -4.0 ppb/K is considered as an evidence of the absence of intramolecular hydrogen bonding.^{6b} All analyses were performed on 3.0 mM solutions to assure the absence of significant molecular aggregation. Variable temperature NMR coefficients were measured by recording four ¹H NMR spectra between 298 and 343 K. Results are summarized in Table 4. For compound 2 the NHMe amide hydrogen appeared downfield at 8.14 ppm, with a coefficient of -3.2 ppb/K, according to an H-bonded conformation. As expected, the NHAc hydrogen is not involved in H-bond ($\Delta\delta/\Delta T = -6.3$ ppb/K). The ¹H NMR spectrum of 3 revealed the presence of two sets of signals in a 3:1 ratio (coalescence was observed at 410 K) for the presence of two conformers. The temperature coefficient values for the NHMe hydrogen of both conformers of compound 3 ($\Delta\delta/\Delta T = -4.0$ for both conformers) suggested that these protons were involved in an equilibrium between a hydrogen-bonded and a non-hydrogen-bonded state.

In summary, in this Letter, we have described the synthesis of new tetrapeptide mimics. Both MM calculations and spectroscopic NMR investigations support the conclusion that the Bid-based scaffolds 2 and 3 are good reverse turns. In particular, VT NMR studies indicated the presence of an equilibrium between a hydrogen-bonded state and a non-hydrogen-bonded state. A type IV β -turn can be postulated for both 2 and 3 in their lowest energy state, based on the analysis of the torsion angles.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2007.12.110.

References and notes

 For reviews, see: (a) Gentilucci, L.; Tolomelli, A.; Squassabia, F. Curr. Med. Chem. 2006, 13, 2449–2466; (b) Perez, J. J.; Corcho, F.; Llorens, O. Curr. Med. Chem. 2002, 9, 2209–2229; (c) Bursavich, M. G.; Rich, D. H. J. Med. Chem. 2002, 45, 541–558; (d) Haubner, R.; Finsinger, D.; Kessler, H. Angew. Chem., Int. Ed. 1997, 36, 1374–1389.

- For reviews, see: (a) Ohfune, Y.; Shinada, T. *Eur. J. Org. Chem.* 2005, 24, 5127–5143; (b) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. *Chem. Rev.* 2001, 101, 3219–3232; (c) Gibson, S. E.; Guillo, N.; Tozer, M. J. *Tetrahedron* 1999, 55, 585–615; (d) Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D. *Tetrahedron* 1997, 53, 12789–12854.
- (a) Ball, J. B.; Hughes, R. A.; Alewood, P. F.; Andrews, P. R. *Tetrahedron* 1993, 49, 3467–3478; (b) Grison, C.; Coutrot, P.; Genève, S.; Didierjean, C.; Marraud, M. J. Org. Chem. 2005, 70, 10753–10764; (c) Trabocchi, A.; Occhiato, E. G.; Potenza, D.; Guarna, A. J. Org. Chem. 2002, 67, 7483–7492; (d) Chakraborty, T. K.; Srinivasu, P.; Vengal Rao, R.; Kiran Kumar, S.; Kunwar, A. C. J. Org. Chem. 2004, 69, 7399–7402.
- (a) Perdih, A.; Kikelj, D. Curr. Med. Chem. 2006, 13, 1525–1556 and references cited therein; (b) Freidinger, R. M. J. Med. Chem. 2003, 46, 5553–5566; (d) Cordero, F. M.; Pisaneschi, F.; Meschini Batista, K.; Valenza, S.; Machetti, F.; Brandi, A. J. Org. Chem. 2005, 70, 856–867; (e) Bittermann, H.; Gmeiner, P. J. Org. Chem. 2006, 71, 97–102; (f) Andreu, D.; Ruiz, S.; Carreño, C.; Alsina, J.; Albericio, F.; Jiménez, M. A.; de la Figuera, N.; Herranz, R.; García-López, M. T.; González-Muñiz, R. J. Am. Chem. Soc. 1997, 119, 10579–10586.
- (a) Balboni, G.; Guerrini, R.; Salvadori, S.; Negri, L.; Giannini, E.; Bryant, S. D.; Jinsmaa, Y.; Lazarus, L. H. J. Med. Chem. 2005, 48, 8112–8114; (b) Lopez-Rodriguez, M. L.; Benhamu, B.; Morcillo, M. J.; Tejada, I.; Avila, D.; Marco, I.; Schiapparelli, L.; Frechilla, D.; Del Rio, J. Bioorg. Med. Chem. 2004, 12, 5181–5191; (c) Sawada, Y.; Kayakiri, H.; Abe, Y.; Mizutani, T.; Inamura, N.; Asano, M.; Hatori, C.; Aramori, I.; Oku, T.; Tanaka, H. J. Med. Chem. 2004, 47, 2853– 2863; (d) Balboni, G.; Salvadori, S.; Guerrini, R.; Negri, L.; Giannini, E.; Jinsmaa, Y.; Bryant, S. D.; Lazarus, L. H. J. Med. Chem. 2002, 45, 5556–5563; (e) Pascual, D.; Giron, R.; Alsasua, A.; Benhamu, B.; Lopez-Rodriguez, M. L.; Martin, M. I. Eur. J. Pharm. 2003, 462, 99– 107; (f) Balboni, G.; Guerrini, R.; Salvadori, S.; Bianchi, C.; Rizzi, D.; Bryant, S. D.; Lazarus, L. H. J. Med. Chem. 2002, 45, 713–720.
- (a) Leach, A. R. Molecular Modelling: Principles and Applications; Prentice-Hall, 2001; (b) Kessler, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 512–523.

- Gellman, S. H.; Dado, G. P.; Liang, G.; Adams, B. R. J. Am. Chem. Soc. 1991, 113, 1164–1173. and references cited therein.
- 8. ¹H NMR (400 MHz, DMSO-*d*₆,): δ 8.14 (br s, 1H), 7.61–7.38 (m, 3H), 7.23–7.21 (m, 2H), 5.00–4.89 (m, 3H), 2.63 (d, *J* = 4.5 Hz, 3H), 2.02 (s, 3H), 1.50 (d, *J* = 6.8 Hz, 3H, CH3). ¹³C NMR (100 MHz, CDCl₃): δ 170.3, 167.5, 142.3, 137.1, 134.2, 123.1, 122.5, 119.7, 109.1, 52.7, 43.4, 25.6, 22.2, 20.1. HRMS *m*/*z* calcd 274.1430, found 274.1427. Experimental procedure for the preparation of **2** is reported in the Supplementary data.
- 9. ¹H NMR (400 MHz, DMSO-*d*₆, 410 K): δ 7.88 (br s, 1H), 7.58 (d, J = 7.2 Hz, 1H), 7.41 (d, J = 7.2 Hz, 1H), 7.19 (m, 2H), 5.25 (m, 1H), 3.85–3.65 (m, 2H), 2.63 (d, J = 4.5 Hz, 3H), 2.45–2.10 (m, 2H), 2.02 (s, 3H), 1.95–1.50 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆, 410 K): δ 168.8, 167.6, 156.7, 142.4, 136.0, 122.4, 122.1, 119.1, 110.6, 54.9, 48.0, 46.3, 33.8, 26.1, 24.8, 22.8. HRMS *m*/*z* calcd 300.1586, found 300.1588. Experimental procedure for the preparation of **3** is reported in the Supplementary data.
- 10. Spartan'06, Wavefunction, Inc. Irvine, CA.
- Belvisi, L.; Bernardi, A.; Manzoni, L.; Potenza, D.; Scolastico, C. Eur. J. Org. Chem. 2000, 2563–2569.
- 12. This was evaluated by means of the 'hydrogen bonds' function implemented in the software, according to which hydrogen bonds are defined as non-bonded contacts between nitrogen or oxygen and a hydrogen attached to nitrogen or oxygen, separated by a distance ranging from 1.6 Å to 2.1 Å and making an X-H-Y (X, Y = N, O) angle >120°.
- 13. Halgren, T. A. J. Comput. Chem. 1996, 17, 490-519.
- 14. Type IV β -turns are defined as those having two or more angles which differ by at least 40° from the definitions of β -turns types I, I', II, II', III and III'.
- 15. Scores are reported as obtained by the similarity analysis function implemented in the Spartan'06 software. The score is defined as $[(1 R^2)/N]$, where R^2 is the rms distance between template and molecule centers and N is the number of similarity centers.
- (a) Chakraborty, T. K.; Uday Kumar, S.; Mohan Krishna, B.; Sarma Dattatreya, G.; Kiran Udaya, M.; Jagadeesh, B. *Tetrahedron Lett.* 2007, 48, 6945–6950; (b) Crisatu, P.; Martin, M. T.; Tran Huu Dau, M. E.; Vors, J. P.; Zhu, J. *Org. Lett.* 2004, 6, 3183– 3186.